
CSC D70:
Compiler Optimization

Prefetching

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

The Memory Latency Problem

• � processor speed >> � memory speed
• caches are not a panacea

2

Prefetching for Arrays: Overview

• Tolerating Memory Latency

• Prefetching Compiler Algorithm and Results

• Implications of These Results

3

Coping with Memory Latency

Reduce Latency:
– Locality Optimizations

• reorder iterations to improve cache reuse

Tolerate Latency:
– Prefetching

• move data close to the processor before it is needed

4

Tolerating Latency Through Prefetching

• overlap memory accesses with computation and other accesses

5

Without Prefetching With Prefetching

Time

Load A

Load B

Fetch A

Fetch B

Load A
Load B

Prefetch A
Prefetch B

Fetch A
Fetch B

Executing Instructions

Stalled Waiting for Data

Types of Prefetching
Cache Blocks:
• (-) limited to unit-stride accesses

Nonblocking Loads:
• (-) limited ability to move back before use

Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead

Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage

6

Prefetching Goals

• Domain of Applicability

• Performance Improvement

– maximize benefit
– minimize overhead

7

Prefetching Concepts
possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced

Analysis: what to prefetch
– maximize coverage factor
– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches
– maximize effectiveness
– minimize overhead per prefetch

8

Reducing Prefetching Overhead
• instructions to issue prefetches
• extra demands on memory system

• important to minimize unnecessary prefetches

9

Hit Rates for Array Accesses

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

10

Steps in Locality Analysis
1. Find data reuse

– if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

– reuse ∩ localized iteration space ⇒ locality

11

Data Locality Example

12

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

Hit
Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group

Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

13

• Temporal reuse occurs between iterations and
whenever:

• Rather than worrying about individual values of
and, we say that reuse occurs along direction vector
when:

• Solution: compute the nullspace of H

Finding Temporal Reuse

14

Temporal Reuse Example

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j1 = j2, and regardless of the difference
between i1 and i2.
– i.e. whenever the difference lies along the nullspace of ,
– which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

15

Prefetch Predicate

Example:

16

Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] +
B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0

B[j+1][0] i = 0

[ij] none
spatial[]=

[ij] temporal
none[]=

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

17

Loop Splitting
• Decompose loops to isolate cache miss instances

– cheaper than inserting IF statements

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large
– avoid code explosion

18

Locality Type Predicate Loop Transformation

None True None

Temporal i = 0 Peel loop i

Spatial (i mod l) = 0 Unroll loop i by l

Software Pipelining

where l = memory latency, s = shortest path through
loop body

19

Iterations Ahead = ⎡ ⎤l
s

for (i = 0; i<100; i++)
 a[i] = 0;

Original Loop

for (i = 0; i<5; i++) /* Prolog */
 prefetch(&a[i]);

for (i = 0; i<95; i++) { /* Steady State*/
 prefetch(&a[i+5]);
 a[i] = 0;
}

for (i = 95; i<100; i++) /* Epilog */
 a[i] = 0;

Software Pipelined Loop
(5 iterations ahead)

Example Revisited

20

for (i = 0; i < 3; i++)
 for (j = 0; j < 100; j++)
 A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
 prefetch(&B[j+1][0]);
 prefetch(&B[j+2][0]);
 prefetch(&A[0][j+1]);
}
for (j = 0; j < 94; j += 2) {
 prefetch(&B[j+7][0]);
 prefetch(&B[j+8][0]);
 prefetch(&A[0][j+7]);
 A[0][j] = B[j][0]+B[j+1][0];
 A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (j = 94; j < 100; j += 2) {
 A[0][j] = B[j][0]+B[j+1][0];
 A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (i = 1; i < 3; i++) {
 prefetch(&A[i][0]);
 for (j = 0; j < 6; j += 2)
 prefetch(&A[i][j+1]);
 for (j = 0; j < 94; j += 2) {
 prefetch(&A[i][j+7]);
 A[i][j] = B[j][0] + B[j+1][0];
 A[i][j+1] = B[j+1][0] + B[j+2][0];
 }
 for (j = 94; j < 100; j += 2) {
 A[i][j] = B[j][0] + B[j+1][0];
 A[i][j+1] = B[j+1][0] + B[j+2][0];
 }
}

Code with Prefetching

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit
Cache Miss i = 0

i > 0

Prefetching Indirections

Analysis: what to prefetch
– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm

21

for (i = 0; i<100; i++)
 sum += A[index[i]];

Software Pipelining for Indirections

22

for (i = 0; i<100; i++)
 sum += A[index[i]];

Original Loop

for (i = 0; i<5; i++) /* Prolog 1 */
 prefetch(&index[i]);

for (i = 0; i<5; i++) { /* Prolog 2 */
 prefetch(&index[i+5]);
 prefetch(&A[index[i]]);
}
for (i = 0; i<90; i++) { /* Steady State*/
 prefetch(&index[i+10]);
 prefetch(&A[index[i+5]]);
 sum += A[index[i]];
}
for (i = 90; i<95; i++) { /* Epilog 1 */
 prefetch(&A[index[i+5]]);
 sum += A[index[i]];
}
for (i = 95; i<100; i++) /* Epilog 2 */
 sum += A[index[i]];

Software Pipelined Loop
(5 iterations ahead)

Summary of Results

Dense Matrix Code:
– eliminated 50% to 90% of memory stall time
– overheads remain low due to prefetching selectively
– significant improvements in overall performance (6

over 45%)

Indirections, Sparse Matrix Code:
– expanded coverage to handle some important cases

23

Prefetching for Arrays: Concluding
Remarks
• Demonstrated that software prefetching is

effective
– selective prefetching to eliminate overhead
– dense matrices and indirections / sparse matrices
– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient
memory bandwidth

24

Prefetching for Recursive Data
Structures

25

Recursive Data Structures
• Examples:

– linked lists, trees, graphs, ...
• A common method of building large data structures

– especially in non-numeric programs
• Cache miss behavior is a concern because:

– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data

Structures

26

Overview

• Challenges in Prefetching Recursive Data

Structures

• Three Prefetching Algorithms

• Experimental Results

• Conclusions

27

Scheduling Prefetches for Recursive Data Structures

28

Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

Performance without Prefetching

29

computation rate = 1 / (L+W)

Prefetching One Node Ahead

30

• Computation is overlapped with memory accesses
computation rate = 1/L

Prefetching Three Nodes Ahead

31

computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:
• any scheme which follows the pointer chain is limited to a rate of 1/L

Our Goal: Fully Hide Latency

32

• achieves the fastest possible computation rate of 1/W

Overview

• Challenges in Prefetching Recursive Data
Structures

• Three Prefetching Algorithms
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Experimental Results

• Conclusions

33

Pointer-Chasing Problem
Key:
• ni needs to know &ni+d without referencing the d-1

intermediate nodes

Our proposals:
• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)
– History-Pointer Prefetching

34

Greedy Prefetching
• Prefetch all neighboring nodes (simplified definition)

– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

• Reasonably effective in practice
• However, little control over the prefetching distance

35

preorder(treeNode * t){
 if (t != NULL){
 pf(t->left);
 pf(t->right);
 process(t->data);
 preorder(t->left);
 preorder(t->right);
 }
}

History-Pointer Prefetching
• Add new pointer(s) to each node

– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances

36

Data-Linearization Prefetching
• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory

37

Summary of Prefetching Algorithms

38

Greedy History-Pointer Data-Linearization

Control over
Prefetching Distance

little more precise more precise

Applicability to
Recursive Data
Structures

any RDS revisited; changes
only slowly

must have a major
traversal order;

changes only slowly
Overhead in
Preparing Prefetch
Addresses

none space + time none in practice

Ease of
Implementation

relatively
straightforward

more difficult more difficulty

Conclusions
• Propose 3 schemes to overcome the pointer-chasing

problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some
situations

39

CSC D70:
Compiler Optimization

Prefetching

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

