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The Memory Latency Problem

• � processor speed >> � memory speed
• caches are not a panacea
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Prefetching for Arrays: Overview

• Tolerating Memory Latency

• Prefetching Compiler Algorithm and Results

• Implications of These Results
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Coping with Memory Latency

Reduce Latency:
– Locality Optimizations

• reorder iterations to improve cache reuse

Tolerate Latency:
– Prefetching

• move data close to the processor before it is needed
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Tolerating Latency Through Prefetching

• overlap memory accesses with computation and other accesses
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Types of Prefetching
Cache Blocks:
• (-) limited to unit-stride accesses

Nonblocking Loads: 
• (-) limited ability to move back before use

Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead

Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage
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Prefetching Goals

• Domain of Applicability

• Performance Improvement

– maximize benefit
– minimize overhead
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Prefetching Concepts
possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced

Analysis:  what to prefetch
– maximize coverage factor
– minimize unnecessary prefetches

Scheduling:  when/how to schedule prefetches
– maximize effectiveness
– minimize overhead per prefetch
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Reducing Prefetching Overhead
• instructions to issue prefetches
• extra demands on memory system

• important to minimize unnecessary prefetches
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Hit Rates for Array Accesses



Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
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Steps in Locality Analysis
1. Find data reuse

– if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected 
to fit within the cache

3. Find data locality:

– reuse ∩ localized iteration space ⇒ locality 
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Data Locality Example
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for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + 
B[j+1][0];
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Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + 
B[j+1][0];
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• Temporal reuse occurs between iterations     and    
whenever:

• Rather than worrying about individual values      of     
and, we say that reuse occurs along direction     vector     
when:

• Solution: compute the nullspace of H

Finding Temporal Reuse
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Temporal Reuse Example

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j1 = j2, and regardless of the difference 
between i1 and i2.
– i.e. whenever the difference lies along the nullspace of         , 
– which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + 
B[j+1][0];
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Prefetch Predicate

Example:
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Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + 
B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0

B[j+1][0] i = 0

[ij] none
spatial[ ]=

[ij] temporal
none[ ]=



Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
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Loop Splitting
• Decompose loops to isolate cache miss instances

– cheaper than inserting IF statements

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large
– avoid code explosion
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Locality Type Predicate Loop Transformation

None True None

Temporal i = 0 Peel loop i

Spatial (i mod l) = 0 Unroll loop i by l



Software Pipelining

where l = memory latency, s = shortest path through 
loop body
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Iterations Ahead = ⎡  ⎤l
s

for (i = 0; i<100; i++)
   a[i] = 0;

Original Loop

for (i = 0; i<5; i++)     /* Prolog */
   prefetch(&a[i]);

for (i = 0; i<95; i++) { /* Steady State*/
   prefetch(&a[i+5]);
   a[i] = 0;
}

for (i = 95; i<100; i++) /* Epilog */
   a[i] = 0;

Software Pipelined Loop 
(5 iterations ahead)



Example Revisited
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for (i = 0; i < 3; i++)
  for (j = 0; j < 100; j++)
    A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
  prefetch(&B[j+1][0]);
  prefetch(&B[j+2][0]);
  prefetch(&A[0][j+1]);
}
for (j = 0; j < 94; j += 2) {
  prefetch(&B[j+7][0]);
  prefetch(&B[j+8][0]);
  prefetch(&A[0][j+7]);
  A[0][j] = B[j][0]+B[j+1][0];
  A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (j = 94; j < 100; j += 2) {
  A[0][j] = B[j][0]+B[j+1][0];
  A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (i = 1; i < 3; i++) {
  prefetch(&A[i][0]);
  for (j = 0; j < 6; j += 2)
    prefetch(&A[i][j+1]);
  for (j = 0; j < 94; j += 2) {
    prefetch(&A[i][j+7]);
    A[i][j] = B[j][0] + B[j+1][0];
    A[i][j+1] = B[j+1][0] + B[j+2][0];
  }
  for (j = 94; j < 100; j += 2) {
    A[i][j] = B[j][0] + B[j+1][0];
    A[i][j+1] = B[j+1][0] + B[j+2][0];
  }
}

Code with Prefetching
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Prefetching Indirections

Analysis: what to prefetch
– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm
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for (i = 0; i<100; i++)
   sum += A[index[i]];



Software Pipelining for Indirections
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for (i = 0; i<100; i++)
   sum += A[index[i]];

Original Loop

for (i = 0; i<5; i++)     /* Prolog 1 */
   prefetch(&index[i]);

for (i = 0; i<5; i++) {   /* Prolog 2 */
   prefetch(&index[i+5]);
   prefetch(&A[index[i]]);
}
for (i = 0; i<90; i++) { /* Steady State*/
   prefetch(&index[i+10]);
   prefetch(&A[index[i+5]]);
   sum += A[index[i]];
}
for (i = 90; i<95; i++) { /* Epilog 1 */
   prefetch(&A[index[i+5]]);
   sum += A[index[i]];
}
for (i = 95; i<100; i++)  /* Epilog 2 */
   sum += A[index[i]];

Software Pipelined Loop 
(5 iterations ahead)



Summary of Results

Dense Matrix Code:
– eliminated 50% to 90% of memory stall time
– overheads remain low due to prefetching selectively
– significant improvements in overall performance (6 

over 45%)

Indirections, Sparse Matrix Code:
– expanded coverage to handle some important cases
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Prefetching for Arrays: Concluding 
Remarks
• Demonstrated that software prefetching is 

effective
– selective prefetching to eliminate overhead
– dense matrices and indirections / sparse matrices
– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient 
memory bandwidth
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Prefetching for Recursive Data 
Structures
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Recursive Data Structures
• Examples:

– linked lists, trees, graphs, ...
• A common method of building large data structures

– especially in non-numeric programs
• Cache miss behavior is a concern because:

– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data 

Structures
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Overview

• Challenges in Prefetching Recursive Data 

Structures

• Three Prefetching Algorithms

• Experimental Results

• Conclusions

27



Scheduling Prefetches for Recursive Data Structures
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Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W 

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this



Performance without Prefetching
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computation rate = 1 / (L+W)



Prefetching One Node Ahead
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• Computation is overlapped with memory accesses
computation rate = 1/L



Prefetching Three Nodes Ahead
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computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:
• any scheme which follows the pointer chain is limited to a rate of 1/L



Our Goal: Fully Hide Latency
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• achieves the fastest possible computation rate of 1/W



Overview

• Challenges in Prefetching Recursive Data 
Structures

• Three Prefetching Algorithms
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Experimental Results

• Conclusions
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Pointer-Chasing Problem
Key:
• ni needs to know &ni+d without referencing the d-1 

intermediate nodes

Our proposals:
• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)
– History-Pointer Prefetching
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Greedy Prefetching
• Prefetch all neighboring nodes (simplified definition)

– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

• Reasonably effective in practice
• However, little control over the prefetching distance
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preorder(treeNode * t){
  if (t != NULL){
    pf(t->left);
    pf(t->right);
    process(t->data);
    preorder(t->left);
    preorder(t->right);
  }
}



History-Pointer Prefetching
• Add new pointer(s) to each node

– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances
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Data-Linearization Prefetching
• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory
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Summary of Prefetching Algorithms
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Greedy History-Pointer Data-Linearization

Control over 
Prefetching Distance

little more precise more precise

Applicability to 
Recursive Data 
Structures

any RDS revisited; changes 
only slowly

must have a major 
traversal order; 

changes only slowly
Overhead in 
Preparing Prefetch 
Addresses

none space + time none in practice

Ease of 
Implementation

relatively 
straightforward

more  difficult more difficulty



Conclusions
• Propose 3 schemes to overcome the pointer-chasing 

problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some 
situations
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